The use of boundary locus plots in the identi cation ofbifurcation points in numerical approximation of delaydi
نویسندگان
چکیده
UMIST The use of boundary locus plots in the identiication of bifurcation points in numerical approximation of delay diierential equations Abstract We are interested in nonlinear delay diierential equations which have a Hopf bifurcation. We assume zero is a steady state for the problem, and so a Hopf bifurcation point lies on the boundary of the region of asymptotic stability for the zero solution. We investigate whether discrete versions of the nonlinear delay diierential equation also exhibit Hopf bifurcations. The analysis of Hopf bifurcation points can be mathematically complicated. Hopf bifurcation is an essentially nonlinear property and therefore the common practice of analysing stability of nonlinear problems through consideration of a linearised version does not apply. However some insights can nevertheless be obtained through a linear analysis and these are the subject of the present report. We use the boundary locus method as a tool to determine the boundary of the stability region, both for the zero solution of the delay diierential equation and for the zero solution of numerical analogues. We use the information obtained about the stability domain to assist in identifying Hopf bifurcations. We demonstrate the following: For certain linear multistep methods, the boundary of the region of stability for the solution of the original equation is approximated by the boundary of the region of stability for the zero solution of the numerical analogue equation to the order of the method. The boundary locus method enables us to determine precise parameter values at which any Hopf bifurcations arise in the discrete equations. We prove that Hopf bifurcation points for the true equation are approximated to the order of the method by corresponding points in the discrete scheme. Further calculations are necessary to determine the precise nature of bifurcation points identiied in this way.
منابع مشابه
UMIST The use of boundary locus plots in the identi cation ofbifurcation points in numerical approximation of delaydi erential
UMIST The use of boundary locus plots in the identiication of bifurcation points in numerical approximation of delay diierential equations Abstract We are interested in nonlinear delay diierential equations which have a Hopf bifurcation. We assume zero is a steady state for the problem, and so a Hopf bifurcation point lies on the boundary of the region of asymptotic stability for the zero solut...
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کاملAn improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کاملAn ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کامل